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Response function of a sphere in a viscoelastic two-fluid medium

Alex J. Levine and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 2 October 2000; published 29 March 2001!

In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere
embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We
calculate the complete response of a single bead in this medium to an external force, and compare the result to
the commonly–accepted, generalized Stokes-Einstein relation~GSER!. We find that our response function is
well approximated by the GSER only within a particular frequency range determined by the material param-
eters of both the bead and the network. We then discuss the relevance of this result to recent experiments.
Finally we discuss the approximations made in our solution of the response function by comparing our results
to the exact solution for the response function of a bead in a viscous~Newtonian! fluid.
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I. INTRODUCTION

Microrheology@1# has become an important experimen
probe of mechanical properties of soft materials such as a
or other biopolymers@2,3#. It is a class of experimental tech
niques that measure the response of probe particles to e
nal forces. It is generally accepted that the response funct
measured in microrheology experiments determine the s
material properties as do traditional rheology experiments
other words, one expects that it is possible to express
response function measured in microrheology in terms of
complex shear modulusG(v). This connection between th
measured response function andG(v) allows one to obtain
rheological data for materials that cannot be produced
large quantity or to study the local rheological properties
rheologically inhomogeneous materials. An important e
ample of a system which satisfies both the above criteri
the living cell. Microrheology, therefore, promises to op
new window on cellular biology@4,5#.

There are currently two classes of techniques used
measure probe-particle responses. In the active techn
probe particles are subjected to an external force~e.g., mag-
netic @5–7# or laser tweezers@8#!, and their displacement
are measured with the aid of microscopes and imaging te
nology. In the passive technique, thermally fluctuating po
tions of particles are measured either via direct observa
@10# or via light scattering@1,3,9# and the response functio
is then determined with the aid of the fluctuation-dissipat
theorem. In either case we emphasize that there is an es
tial role to be played by theory to establish a connect
between the measured response function and the under
material properties of the medium being investigated. I
generally assumed@1,3# that this connection is provided b
the generalized Stokes-Einstein relation~GSER! in which the
positionr (v) of the probe particle~of radiusa) as a function
of frequency is given by

r ~v!5
1

6paG~v!
F~v!, ~1!

whereF(v) is the applied force on the particle andG(v) is
the complex shear modulus. This result is a natural gene
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zation of the Stokes mobility of a rigid, spherical particle
a viscous fluid, where the complex shear modulus reduce
G(v)52 ivh. One can certainly measure the mobility
such a spherical probe particle of known radius in a Newt
ian fluid by observing its Brownian fluctuations~passive
mode!, or by a sedimentation experiment~active mode!, and
thereby determine the viscosity of the medium@11#. The
generalization of this result, embodied by the GSER@Eq.
~1!#, suggests that analogous experiments performed in
arbitrary viscoelastic material will allow one to similarly ob
tain G(v) for that material by the application of Eq.~1!.

In this paper we examine the validity of the GSE
through detailed calculations of the response of a rig
spherical probe particle in a model viscoelastic medium.
particular, we study a two-fluid model@12# of a generic vis-
coelastic medium in which a viscoelastic network is v
cously coupled to a permeating fluid. This model, which
study in a continuum limit, may be taken to represent a ge
an uncrosslinked polymer solution studied at frequenc
larger than its plateau frequency.

There are two basic reasons to question the validity of
GSER: First, the mode structure of a multicomponent m
dium is more complex than that of a simple fluid. A prob
particle moving at a frequencyv will excite modes other
than simple shear modes, and its response to external fo
will, in general, depend on all of these modes in a way
simply described byG(v). Second, at frequencies accessib
to microrheology experiments, which are much greater th
those accessible to traditional rheology experiments, effe
of the inertia of both the particle and the medium@13#, which
are not included either in the simple Stokes-Einstein relat
or in the GSER, may be important. We will investigate bo
of these effects.

The fundamental results of this work have already be
presented elsewhere@14#; here we elucidate the details of ou
approximate calculational scheme, as well as provide a
ther discussion of the results. The remainder of this pape
organized as follows: In Sec. II we discuss the basic tw
fluid model in some detail, describing the hydrodynam
modes of the system. In Sec. III we describe the approxim
calculation of the response of a rigid, spherical particle e
bedded in such a medium. Using a comparison of the res
©2001 The American Physical Society10-1
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ALEX J. LEVINE AND T. C. LUBENSKY PHYSICAL REVIEW E63 041510
of our technique to the well-known result for the drag on
oscillating sphere in a viscous fluid@15#, we discuss the
range of validity of our approximation. In Sec. IV we dete
mine the requisite conditions for the response function to
approximated by the GSER, and detail the crossover to n
GSER-like behavior as a function of frequency. Finally, w
conclude in Sec. V with a discussion of the limits of th
validity of the GSER in which we apply our results to th
experiments of Schnurret al. @3#. In addition we compare the
importance of inertial effects in traditional rheology to tho
in microrheology. A full calculation of the inertial effect
upon a traditional, parallel-plate, rheological measurem
applied to our two-fluid model, is presented in the Appe
dixes.

II. TWO-FLUID MEDIUM

Our model viscoelastic medium consists of a viscoela
network characterized by a displacement variableu that is
viscously coupled via a friction coefficientG to an incom-
pressible, Newtonian fluid characterized by a velocity fieldv
~see Fig. 1!. The viscoelastic network with mesh sizej is
macroscopically isotropic and homogeneous. At len
scales larger thanj, it is characterized by an isotropic con
tinuum elasticity with shear and bulk Lame` coefficientsm
and l, which may in general be complex functions of fr
quencyv. Because of the viscous coupling of the elas
network to the fluid, there is a drag force density acting
the network due to its motion through the fluid, in addition
the force densities resulting from the local, network str
field.

The linearized equation of motion for the displaceme
field in the presence of an externally imposed force den
f u acting directly on the network is

rü2m“

2u2~l1m!“~“•u!52G~ u̇2v!1f u, ~2!

wherer is the mass density of the network. The friction
force density in the above equation is proportional to
local relative velocity of the network and the backgroun

FIG. 1. Microscopic model of the two-fluid medium. The vi
coelastic network is represented by the lines in the figure. The
work has a characteristic mesh size given byj. The probe particle
is a sphere of radiusa shown in the center of the figure. The bac
ground viscous fluid~not shown! permeates the network.
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fluid, as is required by Galilean invariance. We may estim
the viscous coupling constantG as follows: If a strand of the
network of length equal to the characteristic mesh sizej
moves relative to background fluid at a velocityv, the drag
force it experiences is approximatelyhjv, whereh is the
fluid viscosity. The drag force density on the network, giv
by Gv in Eq. ~2! above, is thenhjv/j3;hv/j2. We then
determine thatG;h/j2.

The fluid velocity field v obeys the linearized, incom
pressible Navier-Stokes equation with viscosityh. Including
the drag of the network upon the fluid, we find

rFv̇2h“2v1“P5G~ u̇2v!1f v, ~3!

“•@~12f!v1fu̇#50, ~4!

whererF is the mass density of the fluid,f is the volume
fraction of the elastic network, andP is the pressure.f v, in
analogy tof u, is an externally imposed force density actin
on the fluid. We note that Eq.~4! demands the incompress
ibility of the total solution rather than that of the solve
~background fluid! alone. However, as we are primarily in
terested in discussing microrheological experiments on s
biopolymers such as actin, which form entangled solution
extremely low volume fractions@16#, we may assume tha
f!1. In this limit Eq.~4! becomes the standard condition
the incompressibility of the background fluid,“•v.0.
Similarly, because of the sparseness of the net we may
sume thatr(5frnet)!rF@5(12f)rfluid# where rnet and
rfluid are the densities of the pure network and solvent
spectively. Because of this inequality we will later be able
simplify our results by making the reasonable approximat
that r.0 @17#.

Lastly we comment on the validity of the linearization
the Navier-Stokes equation in Eq.~3!. In order for our lin-
earization to be valid, the force density associated with
convective termrv•“v, omitted from the linearized Navier
Stokes equation coupled tou @Eq. ~3!#, must be small com-
pared to the other force densities in the system. To obta
sense of when this term is unimportant, we investigated
citations at frequencyv in the largevG limit, in which the
effective linearized velocity equation becomes

rFv̇2
G~v!

2 iv
“

2v50, ~5!

where G(v)5m2 ivh. Thus the convective term can b
neglected providedv•“v!1/(2 iv)@2v21G(v)“2/rF#v.
Considering the harmonic motion of the particle with fr
quencyv and amplitudel, we find that there are two cases
study. First, at low frequencies the second term on the rig
hand side of the above equation dominates over the first,
the linearization of the Navier-Stokes equation requires t
v2alr/G(v)!1, which is just the condition that the Rey
nolds number be small. At higher frequencies, however,
first or inertial term on the right-hand side of the above eq
tion dominates over the second, and the linearization n
must be based on the inequalityl /a!1 @15#. Thus the analy-
sis presented in this paper can be extended to high

t-
0-2
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RESPONSE FUNCTION OF A SPHERE IN A . . . PHYSICAL REVIEW E63 041510
quencies where the inertial terms dominate the respo
function and the particle Reynolds number is high, provid
the amplitude of the probe particle’s oscillation is small co
pared to its own radius. Similar conclusions follow whenvG
is not large. The ability to model high-frequency dynamics
important in the study of the response function, since
crorheology allows the experimenter, in principle, to pro
response functions at very high frequencies. Current exp
ments, however, have not yet explored the mechanical
sponse of beads at high enough frequencies to leave the
Reynolds-number regime.

We now discuss the hydrodynamic modes of the two-fl
medium. An equilibrium crystal in a one-component flu
background~e.g., a colloidal solid! has nine hydrodynamic
modes @19,18# ~modes with frequencies vanishing wit
wavenumber! arising from three broken translational sym
metries and the conservation of two masses, energy, and
mentum. There are one heat diffusion mode, one rela
mass diffusion mode, one vacancy diffusion mode, two l
gitudinal sound modes, and four transverse sound mode
our model, network crosslinks are rigidly fixed so there is
vacancy diffusion. Our system is incompressible, so there
no longitudinal sound modes. In addition, we ignore h
diffusion. Therefore, we expect our model two-fluid syste
to have five hydrodynamic modes: one relative mass di
sion mode and four transverse sound modes. Our fundam
tal dynamical equations@Eqs.~2!–~4!# contain threeu equa-
tions with two time derivatives and two independentv
equations with one time derivative, for a total of eig
modes. We therefore expect to find three nonhydrodyna
modes in addition to the five hydrodynamic modes.

We now determine the modes of the two-fluid model
Fourier transforming Eqs.~2!–~4! with f and the externa
forcesf u, andf v set to zero. After eliminating the pressureP
using the incompressibility of the fluid, we find

@DT~k,v!Pab
T 1DL~k,v!Pab

L #ub2Gva50 ~6!

ivGPab
T ub1P~k,v!Pab

T vb50 ~7!

Pab
L vb50, ~8!

where we have defined DT(k,v)52v2r
1mk22 ivG, DL(k,v)52v2r1(2m1l)k22 ivG, and
P(k,v)52 ivrF1hk21G. We have also introduced th
standard transverse@PT(k)5dab2 k̂ak̂b# and longitudinal

@Pab
L (k)5 k̂ak̂b# projection operators. The condition for non

trivial solutions foru andv gives the following result:

DL~k,v!@ ivG21DL~k,v!P~k,v!#250. ~9!

The first factor on the left hand side of Eq.~9! is quadratic in
v, while the second factor, which is cubic inv, is squared
so that the total expression is an eighth order polynomia
v. Its roots, which correspond to the modes of the syst
are clearly divided into two sets. The first set, which a
roots of the first factor on the left-hand side of Eq.~9!, con-
sists of two longitudinal modes. The second set, com
from the roots of the second factor in Eq.~9!, represent the
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remaining six transverse modes. These transverse m
come in three identical pairs corresponding to the two p
sible polarization states of the transverse waves. We
consider the transverse modes in more detail.

Ignoring the polarization-state degeneracy for the m
ment, two of the three transverse modes are a pair of pro
gating shear waves in the medium. For smallk, the disper-
sion relation is given by

v~k!56A m

r1rF
k2

i

2 F mrF
2

G~r1rF!2
1

h

r1rF
Gk2.

~10!

Counting polarization states, these shear modes const
four of the five hydrodynamic modes of the system. T
phase velocity is similar to that of the transverse sou
modes in the elastic medium when decoupled from the ba
ground fluid. The shear wave speed of the two-fluid mode
identical to that of a one-component elastic solid with ma
density replaced by the total combined network—fluid ma
densityr1rF . The effect of the fluid coupling can be see
in the damping rate of this mode. In the weak coupling lim
whereG is small, the dominant contribution to the dampin
rate comes from the first term in the brackets, which ari
from the relative motion of the elastic network against t
background fluid. The strong coupling limit, on the oth
hand, derives its damping from viscous dissipation~the sec-
ond term in brackets! in the fluid which, in this limit, is
sheared as it moves with the network. It should be noted
theG→0, decoupled limit is not easily apparent in the abo
result. The long wavelength approximation has been use
the above derivation, which corresponds to takingk
!AG/h;1/j, where the last expression of the right ha
side was produced using our estimate,G;h/j2.

The third transverse mode has a finite decay rate at z
wave vector and corresponds to a relative motion of the n
work and fluid that comprises our two-component mediu
To lowest order in wave vector its decay rate is given by

v~k!52 iGS rF1r

rFr D , ~11!

where we have droppedO(k2) corrections to the damping
rate.

To examine the longitudinal modes of the medium it
convenient to allow the fluid to have a finite compressibil
x215rF]P/]rF at first and then to take the incompressib
limit later. We, therefore, introduce a variable fluid dens
via rF→rF1dr, that obeys the equation of motiondṙ5
2rF“•v. Projecting out only the longitudinal degrees
freedom of the system, to lowest order in the wave vector
have a pair of propagating longitudinal sound modes w
dispersion relations of the form

vsound~k!56A~2m1l!1xrF

r1rF
k2 id~x!k2, ~12!
0-3
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ALEX J. LEVINE AND T. C. LUBENSKY PHYSICAL REVIEW E63 041510
whered(x)k2 is the decay rate of the sound modes, and t
overdamped modes with decay rates given by

v long~k!52 i
~2m1l!rFx

G~2m1l1rFx!
k2, ~13!

v~k!52 i
G~r1rF!

rrF
. ~14!

We note that the mode with a finite decay rate atk50 @Eq.
~14!# has an identical dispersion relation to the gapped tra
verse mode@Eq. ~11!#. Therefore, we identify it as the lon
gitudinal counterpart to the transverse modes in which th
is relative motion between the network and the fluid. In t
incompressible limit (x→`), the longitudinal sound veloc
ity becomes infinite, as expected. The decay rate diverge
well, d(x)→`; thus these two modes@Eq. ~12!#, in which
the networkand fluid experience compressions and rarifa
tions, do not concern us in the incompressible limit. Wh
will be more interesting with regard to the calculation of t
response of the bead is the fifth hydrodynamic mode@Eq.
~13!#, whose decay rate remains finite in the incompress
limit. In that limit we find that the decay rate takes the for

lim
x→`

v long~k!52 i
2m1l

G
k2. ~15!

This mode is the relative mass diffusion mode of the syst
The network density~described bydr/r52“•u) changes
and relaxes diffusively, while that of the background flu
remains fixed. The existence of a slowly decaying longitu
nal mode not present in an incompressible viscous fluid
consequences for the validity of the GSER in our two-flu
model.

III. CALCULATING THE RESPONSE FUNCTION

To calculate the response of the probe particle to an
plied force, we will need to introduce the rigid probe partic
into the two-fluid medium described in Sec. II. The comple
solution of the problem requires that one solve Eqs.~2!–~4!
with time derivatives replaced by2 iv, f u and f v set equal
to zero, and the enforcement of the correct boundary co
tions at the surface of the probe sphere, i.e.,

u~ uxu5a,v!5v~ uxu5a,v!/2 iv5r ~v!, ~16!

wherer (v) is the frequency-dependent position of the cen
of the probe sphere. In addition we would need to apply
boundary condition that bothu andv go to zero far from the
sphere. After calculating the displacement and velocity fie
u(x,v) andv(x,v) that solve this boundary value problem
we would then calculate the forceFb exerted on the spher
by the medium by integration of the appropriate compone
of the stress tensor over the surface of the probe sph
Newton’s second law applied to the probe sphere~of mass
M ) under the influence of the externally applied forceF(v),

2v2M r ~v!2Fb~v!5F~v!, ~17!
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leads to a determination of the response functiona(v),
wherea is defined by

r ~v!5a~v!F~v!. ~18!

The calculation outlined above is possible for the case o
simple viscous medium, but becomes more difficult for t
two-fluid medium we study. Therefore, we will apply a le
rigorous procedure. To justify this approximation in Appe
dix A we verify that our method does, in fact, reproduce t
correct frequency-dependent response function over som
nite frequency range in the simpler problem of a sphere i
Newtonian fluid. Fortunately, the interesting features of m
crorheological measures can still be explored in the f
quency range still available to our investigation.

Here we briefly outline our approximate calculation: As
first step in this procedure, we restore the applied force d
sitiesf u andf v in the equations of motion. We then calcula
the displacement fieldu and the fluid velocity fieldv every-
where in the medium as a function of the, as yet unde
mined, values of the two applied force densities,f u and f v.
These force densities will be used to represent the for
applied to the medium by the probe sphere. Therefore,
localize these forces at the sphere by setting

f u,v~k,v!5F u,v~v!Q~kmax2uku!, ~19!

whereQ(x) is the unit step function, andkmax5p/2a is the
large wave vector cutoff. One role of the bead is to cut
the spectrum of allowed fluctuations of the medium at
length scale of the probe particle radius. It it then clear t
the wave vector cutoff is proportional to the inverse parti
radius; the numerical coefficient is chosen to produce
correct low-frequency Stokes mobility of the spherical p
ticle in a Newtonian fluid, as verified in Appendix A. W
note that this abrupt cutoff in Fourier space cannot be stri
valid, as we really want a sharp cutoff in the real spa
applied-force profile. However, we will show that this simp
scheme is sufficient to reproduce standard hydrodynamic
sults concerning the frequency-dependent response of an
cillating sphere in a viscous fluid, which we believe justifi
our confidence in our more general application of the
proach.

Following the procedure outlined above, we now have
solution for the motion of the bead in terms of two, as y
unknown, forcesF u, andF v due to the bead acting on th
elastic network and viscous fluid, respectively. We determ
a relation between these two forces by requiring that
boundary condition@Eq. ~16!# at the sphere be satisfied. Th
total force that the bead exerts on the two-fluid medium
therefore given by:2Fb52F u2F v. We have now calcu-
lated the displacement of the sphere in terms ofFb . By in-
verting this relation and using it in Eq.~17!, one can calcu-
late the response function.

To implement this procedure we first determineu andv in
terms of the applied forcesf u,v. We find

G i j
21S uj

v j
D 5S f j

u

Pjk
T f k

vD . ~20!
0-4
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RESPONSE FUNCTION OF A SPHERE IN A . . . PHYSICAL REVIEW E63 041510
The 636 matrix G 21, described in detail in Appendix B
can be decomposed into a 232 matrix of 333 blocks. In
Eq. ~20! the vectorial indices~shown! run over all three spa
tial directions, while the indices labeling the 232 blocks
~suppressed! run over the space spanned by the displacem
field (u) and the fluid velocity field (v). To determineu and
v in terms of the applied forces on the mediumf u andf v, we
simply need to invertG 21. This inversion is easy owing to
the fact that the four 333 blocks of the matrix, displayed in
Appendix B, all mutually commute.

We now integrate this result over all wave vectors,k, to
determine the fluctuating position@r (v)# and velocity
@w(v)# of the point at the origin of the~unstressed! material.
Because the problem is isotropic, we find that the vecto
part of each 232 block is particularly simple~see Appendix
B!:

G(n,m)~v!d i j 5E
uku,kmax

G i j
(n,m)~k,v!

d3k

~2p!3
. ~21!

The limits on the wave vector integral come from the cut
imposed by the rigidity of the sphere,@Eq. ~19!#. We have a
pair of equations specifying the position and velocity of t
point at the origin of the two–fluid medium~the position of
the sphere! in terms of the force on the elastic network a
the transverse part of the force on the fluid;

r i~v!5G(u,u)~v!Fi
u~v!1G(u,v)~v!Fi

v~v! ~22!

wi~v!5G(v,u)~v!Fi
u~v!1G(v,v)~v!Fi

v~v!. ~23!

The boundary condition@Eq. ~16!# becomes wi(v)5
2 ivr i(v). Imposing this condition on Eqs.~22! and ~23!
fixes the ratio ofFu(v) to Fv(v). Using this ratio we write
the displacement of the sphere,r (v), in terms of the total
force that the sphere exerts on the medium,2Fb(v),

r ~v!52g~v!Fb~v!, ~24!

where the functiong(v) is given by

g~v!5
1

12X~v!
@G(u,u)~v!2G(u,v)~v!X~v!#, ~25!

where the functionX(v) can be written in terms of theG’s
as well:

X~v!5
ivG(u,u)~v!1G(v,u)~v!

ivG(u,v)~v!1G(v,v)~v!
. ~26!

Using Eq. ~24! in Eq. ~17! to eliminate Fb , we find the
position response of the bead to an applied force as defi
in Eq. ~18!:

a21~v!5g21~v!2v2M . ~27!

In essence Eqs.~25!, ~26! and~27! completely determine ou
solution for the response function. In order to study the
tailed form of the response function, however, we need
discuss the fourG(n,m)(n,m5u,v) as functions of frequency
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We begin this task in the next section by first discussing e
of the four G’s in turn and then looking in detail at th
response function,a(v) which is made up of theseG’s.

IV. RESPONSE FUNCTION

We first look at the response of the elastic network
forces applied directly to that network,G(u,u)(v). We intro-
duce the following notation: the complex shear modulus
the two–fluid medium will be denoted by the usualG(v)
5m(v)2 ivh. It should be noted that whereash represents
the viscosity of the background solvent—see our estimate
the drag force density coefficientG—the elastic network
may in general be viscoelastic. Its shear modulus will
given in general by a complex, frequency-dependent sh
modulusm. We find thatG(u,u)(v) takes the form:

G(u,u)~v!5
1

6paG~v! F11
G~v!

4m12l
HS v

vB
D1J~v!G ,

~28!

where the functionH(x) is specified by the integral

H~x!512E
0

1 dz

11
iz2

x

. ~29!

This function is plotted in Fig. 2. The functionJ(v) is given
by

J~v!5E
0

1

dz
b~v!1D0~z,v!z2@12m/G~v!#

z2@11mD0~z,v!/G~v!#2b~v!
. ~30!

The frequency scale

FIG. 2. The real and imaginary parts of the crossover funct
H(x), which determines the crossover from low-frequencyv
!vB) behavior, in which the network compressibility plays a ro
in the dynamics of the bead, to the high-frequency (v@vB) incom-
pressible dynamics. In the response functionx is the ratio of the
observation frequency to the frequency scalevB .
0-5
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vB5
~2m1l!

G
kmax

2 ~31!

was also introduced in Eq.~28!. In addition to defining these
two functions, we have introduced a set of new, frequen
dependent parameters. The first of these is

b~v!5
v2rF

kmax
2 G~v!

5
4a2v2rF

G~v!p2
, ~32!

which measures the importance of the fluid inertia in de
mining the dynamics of the medium as may be noted
checking that this parameter can be expressed as the ra
the sphere radius to the inertial decay length in the two-fl
medium @20#. We have also introduced the parame
D0(z,v), defined by

D0~z,v!5
2 ivrF1hkmax

2 z2

G
'2 ivj2/n1~zkmaxj!2,

~33!

which may be identified as the inverse viscous respo
function divided by the drag coefficientG. Using our esti-
mate for the drag coefficient, we may determine the mag
tude ofD0 under the conditions of a typical microrheologic
experiment. The first term on the right-hand side of Eq.~33!
measures the ratio of the observation frequency to the
cous dissipation rate at the length scale of the network m
size j. We may estimate this latter time scale for typic
experiments on actin@3# to be in the 10-MHz range, wel
above any other frequencies of interest. Thusv!n/j2. Simi-
larly, the second term at the right of Eq.~33! is small, as-
suming that the sphere is much larger than the mesh siza
@j. We may reasonably setD0 to zero while discussing ou
result. Expression~30! may then be greatly simplified b
noting thatD0 is vanishingly small under the typical cond
tions of a microrheological experiment. With this approx
mation we rewrite Eq.~30! as

J~v!'b~v!E
0

1

dz
1

z22b~v!
. ~34!

It is now clear from this simplified, approximate form th
J(v) contains corrections to the response function com
from the inertia of the two-fluid medium. In direct analog
with the long-time tails in a Newtonian fluid~see Appendix
A!, the lowest order in frequency inertial corrections comi
from Eq. ~34! are of the formAb(v). In a purely viscous
medium this produces the standardv1/2 corrections. In the
viscoelastic medium, which we now study, the frequen
dependence of the corrections will depend on the deta
form of the complex shear modulus. We take up this po
again in discussing the actin system in our conclusions.

Returning to the functionH introduced in Eq.~28! and
defined by Eq.~29!, we note that, for largex, the function
goes to zero asH(x); i /(3x) ~see Fig. 2!. For observation
frequencies much larger than the frequency scalevB , the
term proportional toH(v/vB) goes to zero, while for fre-
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quencies much less thanvB , this term makes a finite correc
tion to the response function. The physical interpretation
the H function is made clear by recognizing that the cro
over frequency is simply the decay time of the network co
pression mode@whose dispersion relation is given in Eq
~15!# at the length scale of the bead. At frequencies mu
lower thanvB , the effect of the network compression mod
upon the dynamics of the bead is significant while at f
quencies high compared tovB the network is viscously
locked to the incompressible fluid. Therefore, this longitu
nal mode of the network plays no role in the high-frequen
bead dynamics. The functionH(v/vB) controls the cross-
over from compressible network dynamics to incompress
network. Finally we note that the zero-frequency response
the network to a localized force on the network takes
Stokes mobility form, which is a standard result in the m
chanics of elastic media.

Continuing our exploration of the response function, w
consider the response of the network to a force on the fl
G(u,v). We find that this term has the form

G(u,v)~v!5
1

6paG~v!

3E
0

1

dz
z2

z2S 11D0~z,v!
m

G~v! D2b~v!

. ~35!

Once again we may setD0(z,v)50, making only a small
error in the combined limits—v!n/j2 andkmaxj!1—so we
may simplify the above expression to yield

G(u,v)~v!.
1

6paG~v!
, ~36!

whereJ(v) was defined in Eq.~30!.
We are now in a position to see under what limiting co

ditions will the calculated response function reduce to
GSER. Examininga(v) at low enough frequencies so th
we may ignore the bead inertia term (2v2M ) we find the
response function to be

a~v!.
1

6paG~v! F11J~v!1
1

12X~v!

G~v!

4m12l
HS v

vB
D G .
~37!

For bead dynamics at frequencyv small enough so that we
may ignore the inertial corrections contained inJ(v), i.e.,
v,v! and b(v!)51, we may setJ50. If, on the other
hand,v is much larger thanvB we may ignore corrections to
the bead’s fluctuations coming from the thermal excitation
the network compression mode, and thus setH(v/vB)50.
Since we will be able to show that for typical values of t
material parameters~in actin solutions for example@3#! vB
,v!, there will exist a range of frequenciesvB↔v! for
which the response function is well approximated by t
GSER. In order to discuss deviations from the GSER, ho
ever, we need to study the form ofX(v).

We find that the functionX(v) is given by
0-6
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X~v!5
ivh

m~kmaxj!2

3F E0

1

dz
z4

z2S 11
m

G~v!
D0~z,v! D2b~v!G21

3H E0

1

dz
z2D0~z,v!

S 11
m

G~v!
D0~z,v! D z22b~v!

1
G~v!

2l14m
HS v

vB
D J . ~38!

It is important to note that the prefactor multiplyingX(v)
above contains (kmaxj)22, which we have argued is typicall
quite large. The large number is, however, multiplied by
ratio of the viscous stress in the background fluid to
stress in the viscoelastic network. For experimentally rea
able frequencies this ratio is quite small. ThusX(v) presents
a small correction to the response function in a majority
interesting cases. We develop this point further in the disc
sion of these result presented in Sec. V.

V. SUMMARY

The response function of the rigid, spherical probe p
ticle in the two-fluid-medium has been calculated@see Eqs.
~27! and ~37!#. Through a detailed study of the position r
sponse function of the probe particle embedded in a t
fluid, viscoelastic medium to an externally applied force,
have checked the validity of the GSER. Our results show
there exits a frequency rangevB↔v!,ub(v!)u51, over
which the GSER is a good approximation to the full respo
function. We now consider the application of our model
actin networks, which have been the subject of recent inte
investigation @22–24#. Though our model fails to captur
many of the complex features of the actin system~such as
theoretically predicted crossovers between different pow
law frequency regimes or the existence of length scales o
than the mesh size!, we feel that a purely phenomeneologic
analysis of the rheological data on actin networks in terms
our model has some value. We take the point of view t
experiments provide us withG(v) @or, equivalently,G(n),
wheren5(v/2)p is the frequency in Hz# whatever its ori-
gin. We then test to see whether or not the microrheolog
corrections calculated here are important.

In recent actin experiments@3#, the shear modulus wa
found to be well approximated over a frequency range
tending from about 10 Hz~above the plateau frequency! to
the highest measured frequencies of a few KHz by

Gexpt8 ~n!.Gexpt9 ~n!.S n

~Hz! D
3/4

10 dyn/cm2. ~39!

The n3/4 frequency dependence is in agreement with
theories of a number of groups@7,21#. The shear modulus o
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the network dominates over the shear viscosity in the ba
ground fluid up to very high frequencies. This may
checked by comparinguGexpt8 (v)u.uGexpt9 (v)u to the viscous
shear stress modulusvh, taking the viscosity to be that o
water. Using Eq.~39! we can compare the relative magn
tudes of the shear stress in the the viscoelastic networ
that of the background fluid (vh). Clearly at large enough
frequencies the fluid will carry the larger part of the stress
the material, while below some crossover frequency the n
work shear modulus is the the dominant contributor to
mechanical properties of the two-fluid material. A simp
calculation shows that this crossover frequency is appro
mately 63108 Hz, which is well above all experimentally
accessible frequencies, so that the network shear modul
always the principal contributor to the two-fluid shear mod
lus. It is this dominance of the network contribution to th
shear modulus in the material that allows us to ignore c
rections coming fromX(v) in our solution of the respons
function in Eq.~37!. We now check whether inertial effect
are important in these measurements which ranged up to
quencies of a few kHz. There are two sources of iner
effects: those coming from the fluid inertial and those co
ing from the mass of the probe particle. We first look at t
fluid inertia. Using our expression forb(n) in Eq. ~32!, we
find the crossover frequencyn!, b(n!)51, to be given by

n!5~1.6a2!24/5 Hz, ~40!

where a is measured in centimeters. The experiment e
ployed probe sphere sizes ranging from one to fivemm yield-
ing crossover frequencies in the range of 1.7 MHz–131 k
which, given that these experiments probe frequencies u
only a few kHz, suggests that the onset of inertial effe
should be unobservable at present. It should be remembe
however, that the crossover to the inertial regime is slo
being governed byAb(v), so the effects of fluid inertia may
be detectable at significantly lower frequencies. Nevert
less, we do not believe that the present experiments are p
ing the fluid inertial regime. There is a similar inertial effe
due to the mass of the probe particle. To determine the
quency onset of the signature of the probe particle’s iner
we may compare the particle inertial term2v2M to the
dominant contribution to the response function at high f
quency, the generalized Stokes mobility of sphe
6pG(v)a. This comparison gives roughly the same es
mates as those obtained from the fluid inertia estimate ab
The similarity of the two estimates is not surprising, sin
the probe particle is of nearly the same density as the flu

We note from Appendix C that the effect of inertia is n
negligible in the traditional rheological measurements of s
materials@25#. We find that if the soft material is probe
using a standard parallel-plate shear cell, inertial correcti
to the response function,G(v)5m2 ivh, enter at frequen-
cies such that the oscillating plates excite shear waves in
medium whose decay length is shorter than the plate sep
tion L. In the limit that the plate separation is much larg
than the mesh size of the network~a necessary assumptio
for the application of our continuum theory!, these inertial
corrections may be expressed in terms of a plate separa
0-7
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ALEX J. LEVINE AND T. C. LUBENSKY PHYSICAL REVIEW E63 041510
independent scaling factor. In this limit, the experimenta
determined response functionGexpt(v) is related to the ex-
pected, low-frequency response functionG(v)5m2 ivh by
the relation

Gexpt~v!5G~v!y coth~y!, ~41!

where the dimensionless variabley is defined in terms of the
plate separationL and the shear wave speedc and damping
rateD @see Eq.~10! and Eqs.~C18! and ~C19! in Appendix
C#:

y5S i
v

c
2

v2

c3
D D L. ~42!

In the low-frequency limit, such thatuyu!1, it is clear that
this expression reduces to the expected result:Gexpt(v)
.G(v). For the type of parallel-plate experiment under d
cussion, a sample thickness of one millimeter implies t
the inertial corrections can be neglected for frequencies
low 10 kHz. This upper bound on frequencies imposed
the appearance of inertial corrections is of the same orde
magnitude as the analogous bound determined for the
crorheology response function@14#.

We now turn to a determination of the low-frequen
limit of the GSER relation. The lower bound of this fre
quency range is given byvB . Using our expression forvB
given in Eq.~31!, we find that the low-frequency crossov
to the network compression regime occurs at

nB.
2m1l

h

p

8 S j

aD 2

. ~43!

Given typical material parameters for entangled actin so
tions, taking the elastic moduli to be on the order of t
plateau modulus and taking the network mesh size to be
the order of a tenth ofmm, we find thatnB.1 Hz. This is
on the order of the plateau frequency and is certainly pro
by experiment.

To summarize our work we note that the response fu
tion probed by a single particle, microrheological experim
contains information aboutall of the hydrodynamic mode
of the system. In other words the fluctuations of the pro
particle are in response to all the thermally excited mode
the system, whereas in a standard, macrorheological ex
ment, one explicitly determines the response of the syste
an externally applied shear strain. If the medium admits
drodynamic modes that are not simply shear waves, the
crorheological response function cannot be expressed
tirely in terms of the material’s complex shear modulus
determined from standard rheology. On the other hand, if
hydrodynamic modes of the medium are simply shear wa
then we expect that the simple correspondence between
crorheological and standard rheological measurements
expressed by the GSER, will hold at low enough frequenc
At higher frequencies, both techniques will encounter
inertial effects. Microrheology, however, allows the explor
tion of the mechanical response of the medium at m
higher frequencies than those probed by standard rheol
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so the importance of the inertia of both the medium and
probe particle itself cannot be overlookeda priori.

For the model viscoelastic medium which we have stu
ied there is an extra hydrodynamic mode~as compared to an
incompressible, viscous fluid! which introduces a lower-
frequency bound on the validity of the GSER. This low
bound has some experimental significance for entangled
tin solutions, as this lower bound occurs near to the f
quency of the rubber plateau in this material. The iner
effects, however, should not be relevant to current exp
ments that study the high-frequency, single chain dynam
of the system.
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APPENDIX A: RESPONSE OF A SPHERE IN A
NEWTONIAN FLUID

In this appendix we test our approximate solution meth
by calculating the response function of a sphere in a Ne
tonian fluid. This problem has a well-known solution@15#
which lets us check the validity of our approximatio
scheme. As throughout this paper, we assume that the sp
cal particle undergoes a simple harmonic motion of an a
plitude small compared to its size, so that we may neglect
flow advection term in the Navier-Stokes equation even
the high Reynolds number limit. The problem we wish
solve is simply stated: What is the force acting on the bea
it is observed to undergo simple harmonic motion of t
form: v5Re@v0 exp(2ivt)#?

The motion of the spherical particle~of massM ) obeys
Newton’s second law,

M v̇5F1Fb ~A1!

whereF is the externally applied force on the bead, andFb is
the force due to the fluid acting on the bead. We will use o
approximation scheme to calculate that forceFb . First we
solve for the velocity field of the fluid given that some forc
Fv(x,t)5Fv(x,v)exp(2ivt) is applied to it using

rFv̇5h“2v2“P1Fv~x,t !. ~A2!

Additionally, we require the incompressibility of the fluid:

“•v50. ~A3!

We calculate the fluid velocity at the origin~the location of
the bead! by integrating over all wave vectorsk:

va~x50,v!5E d3k

~2p!3

Pab
T ~k!Fv~k,v!

2 ivrF1hk2
. ~A4!
0-8
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RESPONSE FUNCTION OF A SPHERE IN A . . . PHYSICAL REVIEW E63 041510
Noting the spherical symmetry of the bead, we dema
thatFv(k,v)5F(v)F(k) is a function of the magnitude ofk
alone, allowing us to perform the angular integrations ab
and leading to the following result forgv defined by

v~x50,v!5gv~v!F~v!. ~A5!

We determine

gv~v!5
1

6pha F 2

pE0

`

dzF~z!

1
2i

p

v

vn
E

0

`

dzF~z!
1

z22 iv/vn
G , ~A6!

where z5ka, the frequency scalevn5na22 ~where n
5h/rF is the kinematic viscosity! is the viscous dissipation
rate at the length scale of the sphere, and the as yet unkn
functionF is determined by thek dependence ofFv(uku,v),
or, in other words, how we localize the force of the be
upon the fluid at the surface of the bead. One clear choic
to localize the force on the interface of the fluid and t
sphere:Fv(x)5(F/2pa)d(uxu22a2) whereF total force ex-
erted by the sphere on the fluid, and we have suppresse
oscillatory time dependence. An even simpler choice, wh
we have made throughout the paper, is localize the forc
wavevector space viaFv(k)5Q@(p/2a)2uku#. The first
choice leads toF(z)5sin(z)/z while the second version
yields F(z)5(p/2)Q(12z). Hereafter we refer to the firs
version as the ‘‘shell localization,’’ and the second version
the ‘‘volume localization.’’

Using shell localization we find that Eq.~A6! simplifies to
the exact expression

gv
21~v!56pha expF ~12 i !A v

2vn
G . ~A7!

We will be concerned only with the expansion of the abo
expression forv!vn . Using volume localization, on the
other hand, we find that the exact result to all orders is m
complicated, but to orderAv/vn we find an identical resul
to that above@Eq. ~A7!#:

gv
21~v!56phaF11~12 i !A v

2vn
1OS v

vn
D G . ~A8!

Of course, to this order in frequency, we may ignore
inertial of the bead, and from Eq.~A1! we note thatgv

21(v)
is then identical to the inverse response function we sou
This result agrees with the standard solution of this prob
arrived at through the complete solution of the bound
value problem@15# to the order in frequency shown abov
At higher orders in frequency, starting withO(v/vn), where
the bead’s inertia comes into play, deviations between
approximate calculation of the fluid’s inertia and the ex
result appear. Our result overestimates theO(v/vn) contri-
bution to the fluid inertial by a factor of about 5.5. Based
this analysis we expect similar accuracy in the two-fluid c
culations using the volume localization scheme that are
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sented in this paper. As discussed in the conclusions,
inaccuracy of our results at high frequencies is not relev
to the current set microrheological measurements. These
periments have not yet probed the transition to the iner
regime, which should, in fact, be well described by our~cor-
rect! orderO(Av/vn) fluid inertia terms.

APPENDIX B: GÀ1 MATRIX

Here we write the matrixG 21 in its 232 block form. We
introduce the viscous response function in the flu
D21(k,v)52 ivrF1hk2, and the elastic response of th
network, with additional damping due to the coupling to t
viscous fluid, decomposed into its transverse,DT

21(k,v)5

2v2r1mk22 ivG, and longitudinal,DL
21(k,v)52v2r

1(2m1l)k22 ivG, parts. In terms of these functions w
may writeG 21 as

S DT
21~k,v!Pi j

T 1DL
21~k,v!Pi j

L 2Gd i j

ivGPi j
T D21~k,v!d i j 1GPi j

T D .

~B1!

All four 3 33 blocks shown above are proportional to eith
the identity matrix or the transverse or longitudinal proje
tors. Since all three of these matrices are mutually comm
ing, we see that the inversion ofG 21 is quite simple.

After performing this matrix inversion we find that th
four 232 blocks are given by

G i j
(1,1)5

@D21~k,v!1G#Pi j
T ~k!

DT
21~k,v!@D21~k,v!1G#1 ivG2

1
Pi j

L ~k!

2v2r1~2m1l!k2
~B2!

G i j
(1,2)5

GPi j
T ~k!

@D21~k,v!1G#DT
21~k,v!1 ivG2

, ~B3!

G i j
(2,1)5

2 ivGPi j
T ~k!

@D21~k,v!1G#DT
21~k,v!1 ivG2

, ~B4!

G i j
(2,2)5

DT
21~k,v!Pi j

T ~k!

@D21~k,v!1G#DT
21~k,v!1 ivG2

. ~B5!

In the first of the above equations we have found the
sponse of the network to a force on the network. The sec
~and third! of the response functions shown above gives
response of the network~fluid! to a force on the fluid~net-
work!. The final response function is the response of the fl
to a force on the fluid. This interpretation becomes clear
the decoupled limit whereG→0. Here the fluid and the net
work do not interact soG (1,2)5G (2,1)50. The response o
the network to forces on the network is given by

lim
G→0

G i j
(1,1)5

Pi j
T ~k!

2v2r1mk2
1

Pi j
L ~k!

2v2r1~2m1l!k2
, ~B6!
0-9
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ALEX J. LEVINE AND T. C. LUBENSKY PHYSICAL REVIEW E63 041510
showing the standard transverse~first term! and longitudinal
~second term! response of an isotropic, elastic medium to
applied force. The response of the fluid to a force on a fl
is similarly in accord with basic hydrodynamics:

lim
G→0

G i j
(2,2)5

PTi j ~k!

2 ivrF1hk2
. ~B7!

APPENDIX C: STANDARD RHEOLOGY ON THE
TWO-FLUID MEDIUM

In this appendix we calculate the response function of
medium to an externally applied shear strain in order to p
dict the result of a traditional rheological measurement.
check this result in order to compare it with the response
the probe particle discussed in this paper. We do not ex
to see any evidence of the longitudinal network mass den
mode, since the system will be subjected to a pure sh
strain by moving the boundaries of the material. Nevert
less we do expect to observe departures of the shear resp
from the simple value ofG(v)5m2 ivh due to inertial
terms. We will thus compare the effect of inertial in th
standard rheological experiment to the microrheological
periment via this calculation.

We begin with the equations of motion defining the tw
fluid medium@Eqs.~2!–~4!#. We now consider a slab of thi
composite material held between two, parallel, rigid pla
normal to the ẑ axis located atz50,L. The slab is un-
bounded in thexy plane. In order to calculate the comple
shear response of the material we will move the top p
(z5L) harmonically,u(z5L)5 x̂U0e2 ivt while holding the
bottom plate fixed. Given these boundary conditions we c
culate the required shear stress on the top plate,s(z
5L)xz . The ratio of this shear stress to the imposed sh
strainU0 /L is the complex shear complex shear modulus
the frequencyv.

By the translational invariance of the problem in thexy
plane we may restrict our search for the resulting netw
displacement and fluid velocity fields to those of the form

u5F~z!e2 ivtx̂, ~C1!

v5G~z!e2 ivtx̂. ~C2!

Using the incompressibility of the fluid we find thatP, the
hydrostatic pressure, is an harmonic function. Since the p
sures at both plates are equal,P is constant. Using Eqs.~2!
and ~3! we find two coupled, ordinary differential equation
for F andG:

m]z
2F1rv2F1 ivGF1GG50, ~C3!

h]z
2G1 ivrFG2GG2 ivGF50. ~C4!

Putting inF5Fie
l i z andG5Gie

l i z, we find that nontrivial
solutions of the above differential equations can only ex
for values of thel that solve the characteristic equation
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hml41l2@2mG1 iv~rFm1hG!1hrv2#

1@2v2~r1rF!G1 iv3rFr#50. ~C5!

The above equation has four roots coming in two pairs
roots having the same absolue value, i.e.,l1 , . . . ,l4, where
l1

25l2
2 and l3

25l4
2. Corresponding to these four eigenva

ues there are four eigenvectors of the form (Fi ,g iFi). It
should be noted that, since the eigenvector equation dep
only upon the square of the eigenvalue, the coefficientsg i ,
i 51, . . . ,4 have the following relations:g15g2 and g3
5g4. We now may write the general solution to Eqs.~C3!
and ~C4! as a linear superposition of the four eigenvecto
discussed above:

F~z!5(
i 51

4

Fie
l i z, ~C6!

G~z!5(
i 51

4

g iFie
l i z. ~C7!

We have four boundary conditions to determine the rema
ing four constants. At the bottom plate we require sti
boundary conditions for the fluid and the network at th
immobile plate:

G~0!5F~0!50. ~C8!

We also impose stick boundary conditions at the harmo
cally oscillating, upper plate:

G~L !52 ivU0 , ~C9!

F~L !5U0 . ~C10!

Using the above boundary conditions we determine
network displacement field to be

F~z!5
U0

l1
22l3

2 Fl1
2 sinh~l3z!

sinh~l3L !
2l3

2 sinh~l1z!

sinh~l1L !G
1

U0

l1
22l3

2

rv2

m F sinh~l3z!

sinh~l3L !
2

sinh~l1z!

sinh~l1L !G ,
~C11!

and the fluid velocity field to be

G~z!5
2 ivU0

l1
22l3

2 Fl1
2 sinh~l3z!

sinh~l3L !
2l3

2sinh~l1z!

sinh~l1L !G
1

2 ivU0

l1
22l3

2

ivrF

h F sinh~l3z!

sinh~l3L !
2

sinh~l1z!

sinh~l1L !G .
~C12!

We may now calculate the complex shear modulus t
would be measured by a standard rheology experiment
0-10
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formed on our two-fluid medium. We calculate the appli
stress stress divided by the applied shear strain to obtain
response functionGexpt(v):

Gexpt~v!5S m
dF

dz U
z5L

1h
dG

dzU
z5L

D L

U0
. ~C13!

After some minor rearrangements we arrive at

Gexpt~v!5F ~m2 ivh!1
v2~r1rF!

l1l3
GJ~L !. ~C14!

In the above equation, the term in the parentheses is
expected result for the response function. It is simply
sum of the complex shear response of the network and
viscous response of the permeating fluid. The second ter
the brackets is clearly an inertial correction to this stand
result. Both of these terms are multiplied by a system s
dependent scaling factorJ(L). This function when expresse
in terms of the dimensionless variablesx5Ll1 and y
5Ll3, takes the form

J~L !5
xy

x22y2
@x coth~y!2y coth~x!#. ~C15!

We expect that the approximationGexpt.m2 ivh should
hold at least as the limiting behavior ofGexpt(v) at low
frequencies. To check this we need to consider the freque
dependence of the two eigenvalues appearing above:l1 and
l3.

In the limit of low frequency we find that these roots
the characteristic polynomial, Eq.~C5! take the forms

l1
25

G

h
2 ivS rFm1hG

mh D1
v2rF

m
1O~v3!, ~C16!

l3
252

v2~r1rF!

m
2 iv3S rF1r

m D 2

3F mrF
2

~r1rF!2G
1

h

r1rF
G1O~v4!. ~C17!

We note thatl1 at low frequency is the inverse of a micro
scopic length, sinceG/h;j22. In a macroscopic shear ex
periment of the type we are currently considering, the pl
separation is much larger than this microscopic length:Ll1
@1. In Eq.~C15! we may takex5Ll1@1. If we now take
the modulus ofy to be small,uyu5Lul3u!1 we find that
J(L) does, in fact, reduce to unity. The second limit is va
for low frequencies. To satisfy this inequality, both th
imaginary and real parts ofy must be small. We consider th
physical implications of these two conditions independen

It may be checked by comparing Eq.~C17! to Eq. ~10!
that to lowest order in frequency, Re(y)5(Dv2/c2)(L/c)
where c is the transverse shear wave speed andD is the
tranverse shear wave damping rate as given in Eq.~10!:

c5A m

r1rF
~C18!
04151
he

he
e
he
in
d
e

cy

e

.

D5
1

2 F mrF
2

~r1rF!2G
1

h

r1rF
G . ~C19!

The imaginary part ofy, on the other hand, takes the for
Im(y)52Lv/c. Requiring that the modulus ofy be small
~and thus requiring both the imaginary and real parts ofy to
be small! is equivalent to demanding that the sample be s
jected to a uniform~affine! shear deformation, as we discu
below. The standard intrepretation of a macroscopic-sh
rheological experiment supposes that the sample has
affinely deformed by the imposed shear. The validity of th
assumption is essential if one is to determine the comp
shear modulus from a macroscopic-shear rheological exp
ment, where the applied stress and resultant strain are m
sured only at the sample boundaries.

First, the condition that Re(y)!1 implies that the damp-
ing rate of the shear waves multiplied by the shear wa
travel time across the sample must be small. In other wo
the shear wave in the two-fluid composite medium sho
not be appreciably damped on the length scale of the sam
thickness. If, on the other hand, the sample thickness is m
larger than the shear penetration depthd, only a small por-
tion of the sample, of a thickness equal to that penetra
depth, is strained. The shear strain in the sample that re
from the applied stress is not uniformlyU0 /L, but is rather a
spatially dependent quantity. It is of orderU0 /d within one
penetration depth of the moving plate and essentially z
throughout the remaining depth of the sample.

Second, the condition that the imaginary part ofy be
small requires that the oscillation frequency of the plate
smaller than the inverse shear wave propagation time ac
the thickness of the sample. If the applied shearing freque
is too high, there is a significant time lag between the i
posed displacement at the sample boundary and the resu
deformation of the material at points far from that bounda
The result of that lag is once again to produce a nonunifo
shear displacement in the sample, so that the shear stra
not simplyU0 /L but rather some more complicated functio
of position in the medium. This conclusion can be simp
checked for a purely elastic, one-component medium.
the same reasons as discussed above, the measurement
applied shear stress at the boundary will not result in
accurate determination of the shear modulus of the mate

Finally, we give the complex shear response to first or
in frequency as measured in a traditional rheology exp
ment:

Gexpt~v!5G~v!1 ivc~r1rF!Ah

G

1v2FD

c
~r1rF!Ah

G
2G~v!

L2

c2G . ~C20!

Here we have written the expected complex shear respo
asG(v)5m2 ivh, and have made use ofc andD defined
in Eqs.~C18! and~C19!. In the above expression@Eq. ~C20!#
we have not made use of the inequalityGL2/h;(L/j)2

@1, in order to simplify the result further.
0-11
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