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Response function of a sphere in a viscoelastic two-fluid medium
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In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere
embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We
calculate the complete response of a single bead in this medium to an external force, and compare the result to
the commonly—accepted, generalized Stokes-Einstein rel@@&&ER. We find that our response function is
well approximated by the GSER only within a particular frequency range determined by the material param-
eters of both the bead and the network. We then discuss the relevance of this result to recent experiments.
Finally we discuss the approximations made in our solution of the response function by comparing our results
to the exact solution for the response function of a bead in a vis@éestonian fluid.
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[. INTRODUCTION zation of the Stokes mobility of a rigid, spherical particle in
a viscous fluid, where the complex shear modulus reduces to
Microrheology[1] has become an important experimental G(w) = —iw». One can certainly measure the mobility of

probe of mechanical properties of soft materials such as actiguch a spherical probe particle of known radius in a Newton-
or other biopolymer$2,3]. It is a class of experimental tech- jan fluid by observing its Brownian fluctuationpassive
niques that measure the response of probe particles to extenode, or by a sedimentation experime(aictive modg, and
nal forces. It is generally accepted that the response functionfiereby determine the viscosity of the medijdi]. The
measured in microrheology experiments determine the samgeneralization of this result, embodied by the GSHR).
material properties as do traditional rheology experiments. Ini1)], suggests that analogous experiments performed in an
other words, one expects that it is possible to express therbitrary viscoelastic material will allow one to similarly ob-
response function measured in microrheology in terms of théain G(w) for that material by the application of E¢L).
complex shear moduluS(w). This connection between the  In this paper we examine the validity of the GSER
measured response function aBdw) allows one to obtain through detailed calculations of the response of a rigid,
rheological data for materials that cannot be produced ipherical probe particle in a model viscoelastic medium. In
large quantity or to study the local rheological properties ofparticular, we study a two-fluid modg12] of a generic vis-
rheologically inhomogeneous materials. An important ex-coelastic medium in which a viscoelastic network is vis-
ample of a system which satisfies both the above criteria isously coupled to a permeating fluid. This model, which we
the living cell. Microrheology, therefore, promises to openstudy in a continuum limit, may be taken to represent a gel or
new window on cellular biology4,5]. an uncrosslinked polymer solution studied at frequencies
There are currently two classes of techniques used tfarger than its plateau frequency.
measure probe-particle responses. In the active technique, There are two basic reasons to question the validity of the
probe particles are subjected to an external f¢ecg., mag- GSER: First, the mode structure of a multicomponent me-
netic [5-7] or laser tweezer§8]), and their displacements dium is more complex than that of a simple fluid. A probe
are measured with the aid of microscopes and imaging tectparticle moving at a frequency will excite modes other
nology. In the passive technique, thermally fluctuating posithan simple shear modes, and its response to external forces
tions of particles are measured either via direct observatiowill, in general, depend on all of these modes in a way not
[10] or via light scatterind1,3,9 and the response function simply described by (w). Second, at frequencies accessible
is then determined with the aid of the fluctuation-dissipationto microrheology experiments, which are much greater than
theorem. In either case we emphasize that there is an ess@nose accessible to traditional rheology experiments, effects
tial role to be played by theory to establish a connectiorof the inertia of both the particle and the medi{ih3], which
between the measured response function and the underlyirge not included either in the simple Stokes-Einstein relation
material properties of the medium being investigated. It isor in the GSER, may be important. We will investigate both
generally assumefd,3] that this connection is provided by of these effects.

the generalized Stokes-Einstein relai@SER in which the The fundamental results of this work have already been
positionr (w) of the probe particl¢of radiusa) as a function  presented elsewhef&4]; here we elucidate the details of our
of frequency is given by approximate calculational scheme, as well as provide a fur-

ther discussion of the results. The remainder of this paper is
organized as follows: In Sec. Il we discuss the basic two-
fluid model in some detail, describing the hydrodynamic
modes of the system. In Sec. lll we describe the approximate
whereF(w) is the applied force on the particle a@{w) is  calculation of the response of a rigid, spherical particle em-
the complex shear modulus. This result is a natural generalbedded in such a medium. Using a comparison of the results

Mw)= Flw), (1)

67maG(w)
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fluid, as is required by Galilean invariance. We may estimate
the viscous coupling constahtas follows: If a strand of the
network of length equal to the characteristic mesh sjze
moves relative to background fluid at a velocitythe drag
force it experiences is approximatelgév, where » is the
fluid viscosity. The drag force density on the network, given
by I'v in Eq. (2) above, is thenpév/ &3~ v/ £2. We then
determine thal™ ~ 7/ £2.

The fluid velocity fieldv obeys the linearized, incom-
pressible Navier-Stokes equation with viscositylncluding
the drag of the network upon the fluid, we find

pev— VA +VP=T(u—v)+f", 3)

FIG. 1. Microscopic model of the two-fluid medium. The vis-
coelastic network is represented by the lines in the figure. The net-
work has a characteristic mesh size givenéyrhe probe particle
is a sphere of radiua shown in the center of the figure. The back-
ground viscous fluidnot shown permeates the network.

V-[(1—¢)v+¢u]=0, (4

where pg is the mass density of the fluidj is the volume
fraction of the elastic network, arnfd is the pressurd.’, in
analogy tof Y, is an externally imposed force density acting

of our technique to the well-known result for the drag on an®" the fluid. We note that Eq4) demands the incompress-
oscillating sphere in a viscous fluifl5], we discuss the ibility of the total solution rather than that of the splvgnt
range of validity of our approximation. In Sec. IV we deter- (Packground fluid alone. However, as we are primarily in-
mine the requisite conditions for the response function to bderested in discussing microrheological experiments on stiff
approximated by the GSER, and detail the crossover to norRiopolymers such as actin, v_vhlch form entangled solutions at
GSER-like behavior as a function of frequency. Finally, we&Xtremely low volume fraction§l6], we may assume that
conclude in Sec. V with a discussion of the limits of the ¢<1. In this limit Eq.(4) becomes the standard condition of
validity of the GSER in which we apply our results to the e incompressibility of the background fluidV -v=0.
experiments of Schnuat al.[3]. In addition we compare the Similarly, because of the sparseness of the net we may as-
importance of inertial effects in traditional rheology to thoseSUMe thatp(= ¢pne) <pe[ = (1~ $)pauia]l Where ppe; and

in microrheology. A full calculation of the inertial effects Pua @re the densities of the pure network and solvent re-
upon a traditional, parallel-plate, rheological measurementSPectively. Because of this inequality we will later be able to
applied to our two-fluid model, is presented in the Appen-Simplify our results by making the reasonable approximation
dixes. that p=0 [17].

Lastly we comment on the validity of the linearization of
the Navier-Stokes equation in E). In order for our lin-
earization to be valid, the force density associated with the

Our model viscoelastic medium consists of a viscoelasticonvective ternpv- Vv, omitted from the linearized Navier-
network characterized by a displacement variablthat is ~ Stokes equation coupled to[Eq. (3)], must be small com-
viscously coupled via a friction coefficiedt to an incom-  pared to the other force densities in the system. To obtain a
pressible, Newtonian fluid characterized by a velocity field sense of when this term is unimportant, we investigated ex-
(see Fig. L The viscoelastic network with mesh sizeis  citations at frequencw in the largewI’ limit, in which the
macroscopically isotropic and homogeneous. At lengtreffective linearized velocity equation becomes
scales larger thag, it is characterized by an isotropic con-
tinuum elasticity with shear and bulk Lanwefficients - G(w)v2 o .
and \, which may in general be complex functions of fre- PEV —lw V== ®
guency w. Because of the viscous coupling of the elastic
network to the fluid, there is a drag force density acting onwhere G(w)=u—iwn. Thus the convective term can be
the network due to its motion through the fluid, in addition to neglected provided- Vv<1/(—iw)[ — w’+G(w) V% pe]v.
the force densities resulting from the local, network strainConsidering the harmonic motion of the particle with fre-
field. quencyw and amplitude, we find that there are two cases to

The linearized equation of motion for the displacementstudy. First, at low frequencies the second term on the right-
field in the presence of an externally imposed force densityiand side of the above equation dominates over the first, and
fY acting directly on the network is the linearization of the Navier-Stokes equation requires that

w?alp/G(w)<1, which is just the condition that the Rey-
pij—/LVZU—()\+,u)V(V~u)= _r(u_v)+fu, 2) nolds number be small. At higher frequencies, however, the
first or inertial term on the right-hand side of the above equa-
where p is the mass density of the network. The frictional tion dominates over the second, and the linearization now
force density in the above equation is proportional to themust be based on the inequalifya<1 [15]. Thus the analy-
local relative velocity of the network and the background sis presented in this paper can be extended to high fre-

II. TWO-FLUID MEDIUM
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guencies where the inertial terms dominate the responsemaining six transverse modes. These transverse modes
function and the particle Reynolds number is high, provideccome in three identical pairs corresponding to the two pos-
the amplitude of the probe particle’s oscillation is small com-sible polarization states of the transverse waves. We first
pared to its own radius. Similar conclusions follow wheh consider the transverse modes in more detail.
is not large. The ability to model high-frequency dynamics is Ignoring the polarization-state degeneracy for the mo-
important in the study of the response function, since miiment, two of the three transverse modes are a pair of propa-
crorheology allows the experimenter, in principle, to probegating shear waves in the medium. For snkalthe disper-
response functions at very high frequencies. Current expersion relation is given by
ments, however, have not yet explored the mechanical re-
sponse of beads at high enough frequencies to leave the low- . 2
Reynolds-number regime. (K)=* [_# ! alids U
We now discuss the hydrodynamic modes of the two-fluid ptpe 2 I'(p+pp)? PtPF
medium. An equilibrium crystal in a one-component fluid (10
background(e.g., a colloidal soligd has nine hydrodynamic
modes [19,18 (modes with frequencies vanishing with Counting polarization states, these shear modes constitute
wavenumbey arising from three broken translational sym- four of the five hydrodynamic modes of the system. The
metries and the conservation of two masses, energy, and mghase velocity is similar to that of the transverse sound
mentum. There are one heat diffusion mode, one relativenodes in the elastic medium when decoupled from the back-
mass diffusion mode, one vacancy diffusion mode, two longround fluid. The shear wave speed of the two-fluid model is
gitudinal sound modes, and four transverse sound modes. |gentical to that of a one-component elastic solid with mass
our model, network crosslinks are rigidly fixed so there is nodensity replaced by the total combined network—fluid mass
vacancy diffusion. Our system is incompressible, so there argensityp+ pr. The effect of the fluid coupling can be seen
no longitudinal sound modes. In addition, we ignore heajn the damping rate of this mode. In the weak coupling limit,
diffusion. Therefore, we expect our model two-fluid systemyhereT is small, the dominant contribution to the damping
to have five hydrodynamic modes: one relative mass diffurate comes from the first term in the brackets, which arises
sion mode and four transverse sound modes. Our fundamefiom the relative motion of the elastic network against the
tal dynamical equationEqs. (2)—(4)] contain threau equa-  packground fluid. The strong coupling limit, on the other
tions with two time derivatives and two independent hand, derives its damping from viscous dissipatithe sec-
equations with one time derivative, for a total of eightond term in brackejsin the fluid which, in this limit, is
modes. We therefore expect to find three nonhydrodynamigheared as it moves with the network. It should be noted that
modes in addition to the five hydrodynamic modes. theI'—0, decoupled limit is not easily apparent in the above
We now determine the modes of the two-fluid model byresult. The long wavelength approximation has been used in
Fourier transforming Eqs2)—(4) with ¢ and the external the above derivation, which corresponds to takikg
forcesf ", andf" set to zero. After eliminating the pressi®e < [T/,~1/¢, where the last expression of the right hand
using the incompressibility of the fluid, we find side was produced using our estimdte; 7/&2.
The third transverse mode has a finite decay rate at zero
[AT(k"”)PT«B”LAL(k"")Pl&B]“ﬁ_Fva:O ®  wave vector and corresponds to a relative motic)J/n of the net-
work and fluid that comprises our two-component medium.

inPZBUB+H(k’“’)P£BUB:0 () To lowest order in wave vector its decay rate is given by
L —
Pag?s=0: ® [Petp
. - 5 o(k)=—il' , (11
where we have defined A'(k,w)=—owp PEp
+uk?—iwl, ANk ,0)=—-w?p+(2u+Nk*—iol’, and
I(k,w)=—iwpe+7k?+T. We have also introduced the where we have droppe@(k?) corrections to the damping

standard transversgP'(k) = 8,5—k.ks] and longitudinal rate.

[P5(k)=k,kz] projection operators. The condition for non-  To examine the longitudinal modes of the medium it is
trivial solutions foru andv gives the following result: convenient to allow the fluid to have a finite compressibility
X 1=prdPlapg at first and then to take the incompressible

ANk, w)[i 02+ ANk, 0)TI(K, w)]2=0. (9) limit later. We, therefore, introduce a variable fluid density
_ . _ o via pr—pg+ 8p, that obeys the equation of motiafp=
The first factor on the left hand side of B§) is quadraticin ~ — ,_V.v. Projecting out only the longitudinal degrees of

o, while the second factor, which is cubic i, is squared freedom of the system, to lowest order in the wave vector we
so that the total expression is an eighth order polynomial imave a pair of propagating longitudinal sound modes with
. Its roots, which correspond to the modes of the systemgispersion relations of the form

are clearly divided into two sets. The first set, which are

roots of the first factor on the left-hand side of E§), con- ZPESNE:
sists of two longitudinal modes. The second set, coming Wsound K) = * /(21 XPr k—id(Y)k2 (12
from the roots of the second factor in E§), represent the Pt
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whered(x)k? is the decay rate of the sound modes, and twdeads to a determination of the response functiofw),

overdamped modes with decay rates given by where« is defined by
(2pu+N)pex Nw)=a(w)F(o). (18)
Wiong(K) = —1i m+—Hk2' (13
M PEX) . , : :

The calculation outlined above is possible for the case of a

T(p+pg) simple viscous medium, but becomes more difficult for the

w(k)=—i = (14)  two-fluid medium we study. Therefore, we will apply a less

PPF rigorous procedure. To justify this approximation in Appen-

dix A we verify that our method does, in fact, reproduce the

We note that the mode with a finite decay raté&katO [Eq. i ! .
(14)] has an identical dispersion relation to the gapped transgorrect frequency-dependent response function over some fi

. L nite frequency range in the simpler problem of a sphere in a
VﬁLsd?nrglogii?éflﬂ' tg?ﬁf{gﬁ;\‘/’;&f%‘g&g iisv\miedl]ot?;erNevvtonian fluid. Fortunately, the interesting features of mi-
igsrelative motionpbetween the network and the fluid. In the%rorheological measures can still be explored in the fre-
; : o L ’ guency range still available to our investigation.
incompressible limit f— ), the longitudinal sound veloc-

ity becomes infinite, as expected. The decay rate diverges 38 Here we briefly outline our approximate calculation: As a
well, d(x)—: thus these two mode&q. (12)], in which st step in this procedure, we restore the applied force den-

the networkand fluid experience compressions and rarifc";lc-SitieSfu andf " in the equations of motion. We then calculate
P P the displacement field and the fluid velocity fields every-

tions, do not concern us in the incompressible limit. What "0 o medium as a function of the. as yet undeter-
will be more interesting with regard to the calculation of themined, values of the two applied force densitig§andf".

response of the bead is the .f|fth.h.ydrpdynam|c moEle. . These force densities will be used to represent the forces
(13)], whose decay rate remains finite in the mcompressml%pp”ed to the medium by the probe sphere. Therefore, we
limit. In that limit we find that the decay rate takes the form localize these forces at the sphere by setting

. 2utN
lim wiong(k)=—i T

X—®

k2. (15) f4%(k, @) =F " (@) O (Kpax—[K|), (19

where®(x) is the unit step function, ankl,,,=7/2a is the
This mode is the relative mass diffusion mode of the systemlarge wave vector cutoff. One role of the bead is to cut off
The network densitydescribed bysp/p=—V -u) changes the spectrum of allowed fluctuations of the medium at the
and relaxes diffusively, while that of the background fluid length scale of the probe particle radius. It it then clear that
remains fixed. The existence of a slowly decaying longitudi-the wave vector cutoff is proportional to the inverse particle
nal mode not present in an incompressible viscous fluid hagadius; the numerical coefficient is chosen to produce the
consequences for the validity of the GSER in our two-fluidcorrect low-frequency Stokes mobility of the spherical par-
model. ticle in a Newtonian fluid, as verified in Appendix A. We
note that this abrupt cutoff in Fourier space cannot be strictly
lIl. CALCULATING THE RESPONSE FUNCTION valid, as we really want a sharp cutoff in the real space,
applied-force profile. However, we will show that this simple
To calculate the response of the probe particle to an apscheme is sufficient to reproduce standard hydrodynamic re-
plied force, we will need to introduce the rigid probe particle sults concerning the frequency-dependent response of an os-
into the two-fluid medium described in Sec. IIl. The completecillating sphere in a viscous fluid, which we believe justifies
solution of the problem requires that one solve H@$-(4)  our confidence in our more general application of the ap-
with time derivatives replaced by iw, f“andf" set equal proach.
to zero, and the enforcement of the correct boundary condi- Following the procedure outlined above, we now have a

tions at the surface of the probe sphere, i.e., solution for the motion of the bead in terms of two, as yet
_ unknown, forces=", andF" due to the bead acting on the
u([x=a,0)=v(|x|=a,0)/ —io=r(w), (16)  elastic network and viscous fluid, respectively. We determine

] - a relation between these two forces by requiring that the
wherer () is the frequency-dependent position of the centelyondary conditioEq. (16)] at the sphere be satisfied. The
of the probe sphere. In addition we would need to apply thggta| force that the bead exerts on the two-fluid medium is
boundary condition that both andv go to zero far from the  ierefore given by—F,=—FUY—F". We have now calcu-
sphere. After calculating the displacement and velocity field§ateq the displacement of the sphere in term&gf By in-
u(x,) andv(x,) that solve this boundary value problem, yerting this relation and using it in E¢17), one can calcu-
we would then calculate the fordg, exerted on the sphere |5t the response function.
by the medium by integration of the appropriate components 14 implement this procedure we first determinandv in
of the stress tensor over the surface of the probe sphergms of the applied forces"V. We find
Newton’s second law applied to the probe sph@kemass
M) under the influence of the externally applied foF{ev), ( uj)

fj

=\ pT
ijf\li

gt : (20

— 0’Mr(w)—Fp(w)=F(w), (17 Uj
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The 6x6 matrix G, described in detail in Appendix B, 1.0
can be decomposed into ax2 matrix of 3xX 3 blocks. In 0.9
Eq. (20) the vectorial indicegshown run over all three spa- 08 — :jnﬁlg((:))]l

tial directions, while the indices labeling thex2 blocks
(suppressedun over the space spanned by the displacement 0.7
field (u) and the fluid velocity field ). To determineu and 0.6

v in terms of the applied forces on the medifithandf ", we X os
simply need to invert ~1. This inversion is easy owing to T
the fact that the four 8 3 blocks of the matrix, displayed in 04
Appendix B, all mutually commute. 03
We now integrate this result over all wave vectds,to 0.2

determine the fluctuating positiofir(w)] and velocity
[w(w)] of the point at the origin of théunstressedmaterial.

Because the problem is isotropic, we find that the vectorial 0.9 & 030 100 000 J0000 100000
part of each X 2 block is particularly simplésee Appendix X

B):

FIG. 2. The real and imaginary parts of the crossover function
d3 H(x), which determines the crossover from low-frequenay (
)3

(21) < wg) behavior, in which the network compressibility plays a role
in the dynamics of the bead, to the high-frequeney{wg) incom-
pressible dynamics. In the response functois the ratio of the

The limits on the wave vector integral come from the CUtOffobservation frequency to the frequency scale.

imposed by the rigidity of the spherggg. (19)]. We have a

pair of equations specifying the position and velocity of theyye begin this task in the next section by first discussing each
point at the origin of the two—fluid mediurthe position of  of the four G’s in turn and then looking in detail at the
the sphergin terms of the force on the elastic network and response functiong(w) which is made up of thess’s.

the transverse part of the force on the fluid;

G(n,m)(w)5ij=J|k|<k gi(jn,m)(k,w)(2 :

ri(w)=GUY(w)F(w)+GU (w)Fl(w) (22 IV. RESPONSE FUNCTION

We first look at the response of the elastic network to
forces applied directly to that networg")(w). We intro-
The boundary condition[Eq. (16)] becomes w;(w)= duce the folllowing.notati_on: the complex shear modulus of
—iwri(w). Imposing this condition on Eq€22) and (23) the two—flmd medium will be denoted by the usu@{w)
fixes the ratio ofFY(w) to F'(w). Using this ratio we write =~ #(®) —iw. It should be noted that wheregsrepresents
the displacement of the sphemw), in terms of the total the viscosity of the background solvent—see our estimate of

Wi(0)=GYY(w)F!(w)+ GV (w)F(w). (23

force that the sphere exerts on the mediunf,(w) the drag force density coefficiedi—the elastic network
’ ’ may in general be viscoelastic. Its shear modulus will be
rw)=—y(0)Fyo), (24)  given in general by a complex, frequency-dependent shear

modulusw. We find thatG“Y)(w) takes the form:
where the functiony(w) is given by

1 G (@)= Clo) (@), yw)
Yw)= m[G‘“’“)(a))—G(“*V)(w)x(w)], (25 ) 6raG(w) | dmt2n \wg
(28)
where the functiorX(w) can be written in terms of th&’s ] ] -~ )
as well: where the functiorH (x) is specified by the integral
i wGUY () + GV (w) 1 dz
X(w)= in(u'V)(w)-l-G(V’V)(a)) ’ (26) H(x)=1— fo N iz2" (29)
X
Using Eq.(24) in Eq. (17) to eliminate F,, we find the
ﬁ]oggo?lgﬁsponse of the bead to an applied force as defmeﬂwis function is plotted in Fig. 2. The functiai{ w) is given
. : by
a Hw)=y Hw)—o’M. (27)
1 +Ao(z,0)Z[1— ulG
In essence Eq$25), (26) and(27) completely determine our J(w)= dz'Bz(w) ozw)z1-p (w)]. (30
solution for the response function. In order to study the de- 0 71+ plAo(z,0)/G(w) ]~ B(w)

tailed form of the response function, however, we need to
discuss the fouG"™(n,m=u,v) as functions of frequency. The frequency scale
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(Qu+N) guencies much less thasy, this term makes a finite correc-
WBT T Nmax (31)  tion to the response function. The physical interpretation of
the H function is made clear by recognizing that the cross-
was also introduced in Eq29). In addition to defining these OVer frequency is simply the decay time of the network com-
two functions, we have introduced a set of new, frequencyPression modgwhose dispersion relation is given in Eq.

dependent parameters. The first of these is (15)] at the length scale of the bead. At frequencies much
lower thanwg, the effect of the network compression mode
w2pp 4220, upon the dynamics of the bead is significant while at fre-

Blw)= = (32 quencies high compared teg the network is viscously

kraG(®) G(w)m? locked to the incompressible fluid. Therefore, this longitudi-

: . o nal mode of the network plays no role in the high-frequency
which measures the importance of the fluid inertia in detery, 4 dynamics. The functiod (w/wg) controls the cross-

mining the dyngmics of the medium as may be noted .byo er from compressible network dynamics to incompressible
checking that this parameter can be expressed as the ratio twork. Finally we note that the zero-frequency response of

the sphere radius to the inertial decay length in the two-flui he network to a localized force on the network takes the
medium [20]. We have also introduced the parametergiqas mobility form, which is a standard result in the me-

Ag(z,), defined by chanics of elastic media.

i T Continuing our exploration of the response function, we
A _ OPET Monad 2/ p+ 2 consider the response of the network to a force on the fluid,
o(Z,0) - 108 v+ (ZKnad)?, nsider the _
G'"Y. We find that this term has the form

(33

which may be identified as the inverse viscous respons&™(w)=

function divided by the drag coefficiedt. Using our esti- 6maG(w)

2

mate for the drag coefficient, we may determine the magni- 1 7

tude ofA, under the conditions of a typical microrheological X f dz . (39
experiment. The first term on the right-hand side of 3 © 214 8y(z0)——| - Bw)
measures the ratio of the observation frequency to the vis- " G(w)

cous dissipation rate at the length scale of the network mesB
size £&. We may estimate this latter time scale for typical
experiments on actifid] to be in the 10-MHz range, well
above any other frequencies of interest. Taus v/ £2. Simi-
larly, the second term at the right of E3) is small, as-
suming that the sphere is much larger than the mesh &ize, G(”*V)(w)zm,
>¢. We may reasonably sét, to zero while discussing our 7 @
result. Expressior{30) may then be greatly simplified by whereJ(w) was defined in Eq(30).
noting thatA, is vanishingly small under the typical condi-  \we are now in a position to see under what limiting con-
tions of a microrheological experiment. With this approxi- ditions will the calculated response function reduce to the
mation we rewrite Eq(30) as GSER. Examiningx(w) at low enough frequencies so that

we may ignore the bead inertia term >M) we find the

1 response function to be

1
J(w)~p(w) | dzZ—. (39
w)=~pB(w jO zZ_ﬂ(w) 1 1 G(w) H( w)

nce again we may seéty(z,0)=0, making only a small
error in the combined limits-s< v/ £2 andkpa,E<1—so we
may simplify the above expression to yield

(36)

)= grac(w) | 1 TN T TTX (W) aur2n

wp

(43

It is now clear from this simplified, approximate form that (
J(w) contains corrections to the response function coming 37)
from the inertia of the two-fluid medium. In direct analogy
with the long-time tails in a Newtonian fluitee Appendix For bead dynamics at frequenaysmall enough so that we
A), the lowest order in frequency inertial corrections comingmay ignore the inertial corrections containedJifw), i.e.,
from Eq. (34) are of the form\B(w). In a purely viscous w<w* and B(w*)=1, we may set)=0. If, on the other
medium this produces the standand? corrections. In the hand,w is much larger thamg we may ignore corrections to
viscoelastic medium, which we now study, the frequencythe bead’s fluctuations coming from the thermal excitation of
dependence of the corrections will depend on the detailethe network compression mode, and thusét/wg) =0.
form of the complex shear modulus. We take up this pointSince we will be able to show that for typical values of the
again in discussing the actin system in our conclusions.  material parameterén actin solutions for examplg3]) wg

Returning to the functiorH introduced in Eq.(28) and <w*, there will exist a range of frequenciesg«— w* for
defined by Eq(29), we note that, for large, the function  which the response function is well approximated by the
goes to zero asl(x)~i/(3x) (see Fig. 2 For observation GSER. In order to discuss deviations from the GSER, how-
frequencies much larger than the frequency seale the  ever, we need to study the form ¥{w).
term proportional toH (w/wg) goes to zero, while for fre- We find that the functiorX(w) is given by
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the network dominates over the shear viscosity in the back-

[
x(w):#2 ground fluid up to very high frequencies. This may be
#(Kmaxf) checked by comparin5,, ()| =|Gg,,{ )| to the viscous
/4 -1 shear stress modulus#, taking the viscosity to be that of

water. Using Eq{(39) we can compare the relative magni-
tudes of the shear stress in the the viscoelastic network to
that of the background fluide{7). Clearly at large enough
frequencies the fluid will carry the larger part of the stress in

X fld
V4
0 22(1+$A0(z,w))—ﬁ(w)

Lo Z?Ag(2,0) the material, while below some crossover frequency the net-
X JO dz w work shear modulus is the the dominant contributor to the
(1+ on(Z,w))Zz—ﬂ(w) mechanical properties of the two-fluid material. A simple
calculation shows that this crossover frequency is approxi-
G(w) o mately 6X 10° Hz, which is well above all experimentally
m (w—B) (38 accessible frequencies, so that the network shear modulus is

always the principal contributor to the two-fluid shear modu-
lus. It is this dominance of the network contribution to the

. I shear modulus in the material that allows us to ignore cor-
It is important to note that the prefactor multiplyingw) rections coming fronX(w) in our solution of the response

above containskia) * which we have argued is typically function in Eq.(37). We now check whether inertial effects

qutl_te l"’]‘cr%ﬁ' The large ’t"“mb?‘f I?h hol\)/ve\ll(er, mu(ljt'%“e.g ?y :Eeare important in these measurements which ranged up to fre-
ratio ot the viscous stress In the background Tiuid 1o _equencies of a few kHz. There are two sources of inertial
stress in the viscoelastic network. For experimentally realiz

ble f ies this ratio i it LT " effects: those coming from the fluid inertial and those com-
able frequencies this ratio 1S quite small. | h((;‘m) presents ing from the mass of the probe particle. We first look at the
a small correction to the response function in a majority o

) . ; . ; . fluid inertia. Using our expression f@(v) in Eq. (32), we
interesting cases. We develop this point further in the discu *\ -
sion of these result presented in Sec. V. ind the crossover frequenay’, B(v")=1, to be given by

v*=(1.6a?)"*® Hz, (40)
V. SUMMARY

The response function of the rigid, spherical probe parwherea is measured in centimeters. The experiment em-
ticle in the two-fluid-medium has been calculafsge Eqs. Ployed probe sphere sizes ranging from one to fimeyield-
(27) and (37)]. Through a detailed study of the position re- INg crossover frequencies in the range of 1.7 MHz—1_31 kHz,
sponse function of the probe particle embedded in a twowhich, given that these experiments probe frequencies up to
fluid, viscoelastic medium to an externally applied force, we@nly @ few kHz, suggests that the onset of inertial effects
have checked the validity of the GSER. Our results show thathould be unobservable at present. It should be remembered,
there exits a frequency rangeg— w*,|8(0*)|=1, over however, that the crossover to the inertial regime is slow,
which the GSER is a good approximation to the full respons&€ing governed by/3(w), so the effects of fluid inertia may
function. We now consider the application of our model tobe detectable at significantly lower frequencies. Neverthe-
actin networks, which have been the subject of recent intend€ss, we do not believe that the present experiments are prob-
investigation[22—24. Though our model fails to capture ing the fluid inertial regime. There is a similar inertial effect
many of the complex features of the actin systésuch as due to the mass of the probe particle. To determine the fre-
theoretically predicted crossovers between different powerduency onset of the signature of the probe particle’s inertia,
law frequency regimes or the existence of length scales othé¥e may compare the particle inertial termw®M to the
than the mesh sizewe feel that a purely phenomeneological dominant contribution to the response function at high fre-
analysis of the rheological data on actin networks in terms ofluency, the generalized Stokes mobility of sphere,
our model has some value. We take the point of view thab7G(w)a. This comparison gives roughly the same esti-
experiments provide us wits(w) [or, equivalently,G(v), mates as those obtained from the fluid inertia estimate above.
where v=(w/2) is the frequency in Hgwhatever its ori- The similarity of the two estimates is not surprising, since
gin. We then test to see whether or not the microrheologicalh€ probe particle is of nearly the same density as the fluid.
corrections calculated here are important. We note from Appendix C that the effect of inertia is not

In recent actin experimen{s8], the shear modulus was negligible in the traditional rheological measurements of soft
found to be well approximated over a frequency range exmaterials[25]. We find that if the soft material is probed
tending from about 10 Htabove the plateau frequenctp ~ Using a standard parallel-plate shear cell, inertial corrections

the highest measured frequencies of a few KHz by to the response functio®(w)=u—iw7, enter at frequen-
cies such that the oscillating plates excite shear waves in the

medium whose decay length is shorter than the plate separa-
tion L. In the limit that the plate separation is much larger
than the mesh size of the netwof& necessary assumption
The »®* frequency dependence is in agreement with thefor the application of our continuum theonthese inertial
theories of a number of groupg,21]. The shear modulus of corrections may be expressed in terms of a plate separation

v 3/4
ngpt(v):GgXp{V):(m> 10 dyn/cnf. (39
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independent scaling factor. In this limit, the experimentallyso the importance of the inertia of both the medium and the
determined response functid@y,,{ ) is related to the ex- probe particle itself cannot be overlookadpriori.

pected, low-frequency response funct®fw) = u—iwn by For the model viscoelastic medium which we have stud-
the relation ied there is an extra hydrodynamic mo@es compared to an
incompressible, viscous fluidwhich introduces a lower-

Gexpf{ @) =G(w)y cothy), (41)  frequency bound on the validity of the GSER. This lower

) ) o ] ) bound has some experimental significance for entangled ac-
where the dimensionless varialyés defined in terms of the  in soJutions, as this lower bound occurs near to the fre-

plate separatioh and the shear wave speed@nd damping  guency of the rubber plateau in this material. The inertial
rate A [see Eq(10) and Eqs(C18 and(C19 in Appendix  effects, however, should not be relevant to current experi-
Cl ments that study the high-frequency, single chain dynamics
of the system.

L. (42)

| sz
y=lic—=
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the appearance of inertial corrections is of the same order of
magnitude as the analogous bound determined for the mi-  APPENDIX A: RESPONSE OF A SPHERE IN A
crorheology response functiga4. NEWTONIAN FLUID

We now turn to a determination of the low-frequency
limit of the GSER relation. The lower bound of this fre-
guency range is given byg. Using our expression fabg
given in Eq.(31), we find that the low-frequency crossover
to the network compression regime occurs at

£

a

In the low-frequency limit, such thay|<1, it is clear that

In this appendix we test our approximate solution method
by calculating the response function of a sphere in a New-
tonian fluid. This problem has a well-known solutiph5]
which lets us check the validity of our approximation
scheme. As throughout this paper, we assume that the spheri-
2 cal particle undergoes a simple harmonic motion of an am-

(43 plitude small compared to its size, so that we may neglect the

flow advection term in the Navier-Stokes equation even in

) ) ) _ the high Reynolds number limit. The problem we wish to
Given typical material parameters for entangled actin solugqe js simply stated: What is the force acting on the bead if
tions, taking the elastic moduli to be on the order of thej; is opserved to undergo simple harmonic motion of the
plateau modulus and taking the network mesh size to be op . \, = Re v, expiwt)]?
the order of a tenth ofim, we find thathz_l Hz. Th|s IS The motion of the spherical partici®f massM) obeys
on the order of the plateau frequency and is certainly probegq\\ton’s second law
by experiment. ’

To summarize our work we note that the response func- MV=F+F (A1)
tion probed by a single particle, microrheological experiment b
contains information aboull of the hydrodynamic modes
of the system. In other words the fluctuations of the prob
particle are in response to all the thermally excited modes o,
the system, whereas in a standard, macrorheological experl
ment, one explicitly determines the response of the system
an externally applied shear strain. If the medium admits hy-
drodynamic modes that are not simply shear waves, the mi-
crorheological response function cannot be expressed en-
tirely in terms of the material’s complex shear modulus as, | ... . . I -
determined from standard rheology. On the other hand, if théa‘dd'tlona”y’ we require the incompressibility of the fluid:
hydrodynamic modes of the medium are simply shear waves, V.v=0 (A3)
then we expect that the simple correspondence between mi- '

crorheological and standard rheological measurements, 8o cajculate the fluid velocity at the origitthe location of
expressed by the GSER, will hold at low enough frequenuesme beagl by integrating over all wave vectoks
At higher frequencies, both techniques will encounter the

inertial effects. Microrheology, however, allows the explora-
tion of the mechanical response of the medium at much v (x=0,w)=f
higher frequencies than those probed by standard rheology, “

2u+tN
vg= 7 g

whereF is the externally applied force on the bead, &jds

e force due to the fluid acting on the bead. We will use our
pproximation scheme to calculate that fofge. First we
olve for the velocity field of the fluid given that some force
WX 1) =F,(X,w)exp(—iwt) is applied to it using

pev= V- VP+F,(Xt). (A2)

d3k P;I;B(k)Fv(kyw)
2m)° —iwpe+ 7k? .

(A4)
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Noting the spherical symmetry of the bead, we demandented in this paper. As discussed in the conclusions, the
thatF,(k,w) =F(w) F(k) is a function of the magnitude &  inaccuracy of our results at high frequencies is not relevant
alone, allowing us to perform the angular integrations abovéo the current set microrheological measurements. These ex-

and leading to the following result foy, defined by periments have not yet probed the transition to the inertial
regime, which should, in fact, be well described by (uor-
V(x=0,0)=y(w)F(w). (AS)  rech orderO(wl/w,) fluid inertia terms.

We determine 1
APPENDIX B: G~ MATRIX

yo(w)= 6

Efmdzf(z) Here we write the matrig ~* in its 2X 2 block form. We
m)o introduce the viscous response function in the fluid,
A~ Y(k,w)=—iwpe+ 7k, and the elastic response of the
2i o (= 1 network, with additional damping due to the coupling to the
+ T o, fo dﬂ(z)m ' (AB)  viscous fluid, decomposed into its transverbg, (k,w) =
’ —w?p+uk?—iel’, and longitudinal, D *(k,w)=—w?p

where z=ka, the frequency scalaw,=va 2 (where v +(2u+N)k?*—iwl', parts. In terms of these functions we
= ylpg is the kinematic viscosityis the viscous dissipation may writeG ~* as
rate at the length scale of the sphere, and the as yet unknown

1
mna

-1 T -1 L
function F is determined by th& dependence df,(|k|,»), D1 (k,@)Pjj+ D “(k,w)Pj T8
or, in other words, how we localize the force of the bead inPﬂ A_l(k,w)éij-i-FP?} ’
upon the fluid at the surface of the bead. One clear choice is (B1)

to localize the force on the interface of the fluid and the

sphereF,(x) = (F/2mra) 8(|x|>—a?) whereF total force ex- All four 3 X3 blocks shown above are proportional to either
erted by the sphere on the fluid, and we have suppressed tiee identity matrix or the transverse or longitudinal projec-
oscillatory time dependence. An even simpler choice, whicHors. Since all three of these matrices are mutually commut-
we have made throughout the paper, is localize the force iing, we see that the inversion 6f~* is quite simple.
wavevector space vid,(k)=0[(w/2a)—|k|]. The first After performing this matrix inversion we find that the
choice leads toF(z)=sin()/z while the second version four 2X2 blocks are given by

yields F(z) = (7/2)® (1—z). Hereafter we refer to the first

version as the “shell localization,” and the second version as [AY(k,@)+TPf (k)

(11—
the “volume localization.” o 9i _D;l(k,w)[A—l(km)JrF]Jriwrz
Using shell localization we find that EGA6) simplifies to
the exact expression PiLj(k)
— 5 (B2)
o) 0 p+(2u+N)k
vy Hw)=6mnaexp (1-i) >—| (A7)
” G0 rPj(k) -
We will pe concerned only with the expans-ion.of the above i _[A‘l(k,w)+F]D{1(k,w)+in2' (B3)
expression foro<w,. Using volume localization, on the
other hand, we find that the exact result to all orders is more —iwlPT(K)
complicated, but to ordefw/w, we find an identical result Gh= il . (Ba)
to that abovdEq. (A7)]: AT YK, 0)+TIDT (K, w) +iwl?
w w -1 T
vo Y w)=6m7a 1+(1_i)w/2wv+o(w_v } (A8) G22)_ D1 (k,®)Pj (k) B5)

1A Y(k,0)+T D7 YK, 0)+iwl'?

Of course, to this order in frequency, we may ignore the ' .
inertial of the bead, and from E¢A1) we note thaty\jl(w) In the first of the above equations we have found the re

is then identical to the inverse response function we sough ponse of the network to a force on the network. The second
. : . ) and third of the response functions shown above gives the
This result agrees with the standard solution of this problerrgs g P 9

. . esponse of the networtfluid) to a force on the fluidnet-
a;rllvgd ?)tbltgr:%;g]h t;htiecgrggef fsrglu“gr?c of :;e nb(;légdaerywork). The final response function is the response of the fluid
Xt rL: r?r ders in f r rtl i que y/S W h V€ o a force on the fluid. This interpretation becomes clear in

'9 er,or. €rs inirequency, starting W@(."’ w,), where the decoupled limit wher&€ —0. Here the fluid and the net-
the bead’s inertia comes into play, deviations between o

; . y, HEVIAH YWork do not interact s@X?=g@Y=0. The response of
approximate calculation of the fluid's inertia and the exacty o etwork to forces on the network

. ) is given b
result appear. Our result overestimates @ev/ w,) contri- g y
bution to the fluid inertial by a factor of about 5.5. Based on T L
. . e ; : Pii (k) Pii (k)
this analysis we expect similar accuracy in the two-fluid cal- lim Qi(jl’l)z J ! , (B6)
culations using the volume localization scheme that are pre-  r—o —w?p+uk? —o?p+(2u+N)k?
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showing the standard transver$iest term and longitudinal N+ N[ — ul +io(ppu+ 7)) + 7pw?]
(second termresponse of an isotropic, elastic medium to an ) .
applied force. The response of the fluid to a force on a fluid +[ =0 (p+pp)l' +io pep]=0. (CH

is similarly in accord with basic hydrodynamics: . o .
The above equation has four roots coming in two pairs of

PTij (k) roots having the same absolue value, hg., . . . A4, Where
lim G{#?=— . (B7)  \3=\3 and\3=\3. Corresponding to these four eigenval-
r—o —lwpe+ 7k ues there are four eigenvectors of the forf (y;F;). It
should be noted that, since the eigenvector equation depends
APPENDIX C: STANDARD RHEOLOGY ON THE only upon the square of the eigenvalue, the coefficignts
TWO-FLUID MEDIUM i=1,...,4 have the following relations:y;=vy, and y;

=1vy,. We now may write the general solution to E¢E.3)
In this appendix we calculate the response function of theand (C4) as a linear superposition of the four eigenvectors
medium to an externally applied shear strain in order to prediscussed above:
dict the result of a traditional rheological measurement. We

check this result in order to compare it with the response of 4 N

the probe particle discussed in this paper. We do not expect F(Z)=Z1 Fiehie, (C6)
to see any evidence of the longitudinal network mass density .

mode, since the system will be subjected to a pure shear 4

strain by moving the boundaries of the material. Neverthe- _ E oAz

less we do expect to observe departures of the shear response G(2) .21 viFiet 7

from the simple value ofG(w)=u—iw»n due to inertial
terms. We will thus compare the effect of inertial in the We have four boundary conditions to determine the remain-
standard rheological experiment to the microrheological exing four constants. At the bottom plate we require stick
periment via this calculation. boundary conditions for the fluid and the network at that
We begin with the equations of motion defining the two-immobile plate:
fluid medium[Egs.(2)—(4)]. We now consider a slab of this
composite material held between two, parallel, rigid plates G(0)=F(0)=0. (C8
normal to thez axis located az=0L. The slab is un- ) ) » )
bounded in thexy plane. In order to calculate the complex W€ also impose stick boundary conditions at the harmoni-
shear response of the material we will move the top plat€@lly oscillating, upper plate:
(z=L) harmonically,u(z=L) =>A<U0e‘i“‘t while holding the o
bottom plate fixed. Given these boundary conditions we cal- G(L)=~1wUo, (€9
culate the required shear stress on the top plate
=L),,. The ratio of this shear stress to the imposed shear
strainU,/L is the complex shear complex shear modulus at
the frequencyw.
By the translational invariance of the problem in thg
plane we may restrict our search for the resulting network

F(L)=U,. (C10

Using the above boundary conditions we determine the
network displacement field to be

displacement and fluid velocity fields to those of the forms F(z)= Yo |2 s.lnr()\3z) —\2 S.mm‘lz)
N2—\2| tsinh(AgL)  T3sinh(niL)
u=F(z)e '*, (C1) - :
Uy po°|sinh(\3z) sinh(A,2)
V:G(Z)eiiwt;(. (CZ) )\i_)\g M Sinr()\BL) Sinr()\lL) ,
. . . . . (C1y
Using the incompressibility of the fluid we find th&t the
hydrostatic pressure, is an harmonic function. Since the presind the fluid velocity field to be
sures at both plates are equRljs constant. Using Eq42)
and(3) we find two coupled, ordinary differential equations —iwUq[ . sinh(\52) sinh(\,2)
for F andG: G(2)= | M= —\3=
AZ—)\3 sinh(\3L) sinh(\ (L)
2 2F i _
posF+poF+iwl' F+TG=0, (C3 “iwUq iwpg [ siningz)  sinh(A;2)
702G +iwprG—TG—iwlF=0. (C4) Nf=A3 7 [sinh(Asl) - sinh(A4L)
(C12

Putting inF=F,;e"i? and G=G,;ei?, we find that nontrivial
solutions of the above differential equations can only exist We may now calculate the complex shear modulus that
for values of thex that solve the characteristic equation ~ would be measured by a standard rheology experiment per-
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formed on our two-fluid medium. We calculate the applied 1 up2 7’
stress stress divided by the applied shear strain to obtain the A== F =t . (C19
response functio g,y ): 2| (p+pp)T PP
Gl ©) = d_F n d_G L (c13 The imaginary part ofy, on the other hand, takes the form
expt. © Kz oL T4z .- Yo’ Im(y) = —Lw/c. Requiring that the modulus of be small

(and thus requiring both the imaginary and real party tf
After some minor rearrangements we arrive at be small is equivalent to demanding that the sample be sub-
2 jected to a unifornaffine) shear deformation, as we discuss

® (p+pp)}\](|_) (C14) below. The standard intrepretation of a macroscopic-shear
Aih3 ' rheological experiment supposes that the sample has been

) ) . affinely deformed by the imposed shear. The validity of that

In the above equation, the term in the parentheses is thgssumption is essential if one is to determine the complex

expected result for the response function. It is simply théshear modulus from a macroscopic-shear rheological experi-

sum of the complex shear response of the network and thgent, where the applied stress and resultant strain are mea-
viscous response of the permeating fluid. The second term ig req only at the sample boundaries.

the brackets is clearly an inertial correction to this standard First, the condition that Rgj<1 implies that the damp-
result. Both of these terms are multiplied by a system sizezr'ng rate of the shear waves multiplied by the shear wave
dependent scaling factd(L). This function when expressed {raye| time across the sample must be small. In other words
in terms of the dimensionless variables=L\; andy  the shear wave in the two-fluid composite medium should
=LN\3, takes the form not be appreciably damped on the length scale of the sample
Xy thickness. If, on the other hand, the sample thickness is much
5 [x coth(y) —y coth(x)]. (C15 Igrger than the shear penetration depthonly a small por- .
y tion of the sample, of a thickness equal to that penetration
o ] depth, is strained. The shear strain in the sample that results
We expect that the approximalti@,=u—iw#, should  from the applied stress is not uniformly, /L, but is rather a
hold at least as the limiting behavior @e,(w) at low  gpatially dependent quantity. It is of ordel, /8 within one
frequencies. To check thl_s we need to conS|_derthe frequencdenetration depth of the moving plate and essentially zero
dependence of the two eigenvalues appearing abovand throughout the remaining depth of the sample.

Gexpt(w): (n—iown)+

==

As. o ] Second, the condition that the imaginary partyobe
In the limit of low frequency we find that these roots of sma| requires that the oscillation frequency of the plate be
the characteristic polynomial, E(C5) take the forms smaller than the inverse shear wave propagation time across
, T [pem+nl w2pp , f[he thick_ness of the_: sample: !f the a_pplied shearing frequgncy
)\1=;—Iw o +0(w®), (C16 is too high, there is a significant time lag between the im-

posed displacement at the sample boundary and the resulting
2 deformation of the material at points far from that boundary.

+
PETP The result of that lag is once again to produce a nonuniform

2
w(pt
N AL

K M shear displacement in the sample, so that the shear strain is
2 not simplyU,/L but rather some more complicated function
s + 7 +0(w). (C17 of position in the medium. This conclusion can be simply
(p+pp)°T  PHPF checked for a purely elastic, one-component medium. For

) ) ) the same reasons as discussed above, the measurement of the
We note thai; at low frequency is the inverse of a micro- gpplied shear stress at the boundary will not result in an
scopic length, sinc&/7~¢2. In a macroscopic shear ex- accurate determination of the shear modulus of the material.
periment of the type we are currently considering, the plate Finally, we give the complex shear response to first order

separation is much larger than this microscopic leng#y  in frequency as measured in a traditional rheology experi-
>1. In Eq.(C15 we may takex=LA;>1. If we now take ment:

the modulus ofy to be small,|y|=L|\3|<1 we find that
J(L) does, in fact, reduce to unity. The second limit is valid _ 7
for low frequencies. To satisfy this inequality, both the Gexp @) =G(w)+iwc(p+pe) \ §
imaginary and real parts gfmust be small. We consider the

physical implications of these two conditions independently.

It may be checked by comparing E@C17) to Eq. (10) + w?
that to lowest order in frequency, R&E (Aw?/c?)(L/c)
where ¢ is the transverse shear wave speed ands the
tranverse shear wave damping rate as given in(Eg):

L2

A 7
< (ptpe) F_G(“’)E' (C20

Here we have written the expected complex shear response
asG(w)=u—1wn, and have made use ofandA defined

\/— in Eqgs.(C18 and(C19. In the above expressidiq. (C20)]
M
Pt PE

(c1g We have not made use of the inequalify 2/ »~ (L/&)?
>1, in order to simplify the result further.
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